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1. Introduction

In recent attempts to stabilise moduli in string compactifications fluxes have played a

crucial role. It has also been realised that the notion of flux can be generalised to include

geometric fluxes which can be described in terms of manifolds with restricted structure

group. In this paper we will concentrate on six-dimensional manifolds with SU(3) structure

which are the nearest cousins of Calabi-Yau manifolds. There exists a further generalisation

to non-geometric fluxes which are related to backgrounds with SU(3) × SU(3) structure,

but in this paper we will stay in the realm of geometric compactifications.

In the context of heterotic string compactifications, manifolds with SU(3) structure

play an important role. Soon after Calabi-Yau compactifications were proposed in ref. [1] it

was realised that in the presence of H-flux, the supersymmetric ground state of the heterotic

string corresponds to an internal manifold which is complex, but non-Kähler [2, 3]. More

recently, in refs. [4 – 17] such compactifications were classified in terms of SU(3) structures
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which is the natural way to approach this problem. It was argued in refs. [7, 8, 11] that in

this way a superpotential is generated and some of the Calabi-Yau moduli get fixed.

This mechanism for moduli stabilisation is one of the most attractive phenomenological

features of SU(3) structure compactifications, particularly in the context of the heterotic

string, where only one type of conventional flux, NS-NS flux, is available. For Calabi-Yau

compactifications, this stabilises the complex structure moduli [18] but not the Kähler

moduli (and the dilaton) which remain flat directions. The only know way to generate a

perturbative superpotential for the Kähler moduli is indeed to use manifolds with SU(3)

structure. In this paper we shall restrict our attention to a class of manifolds with SU(3)

structure — termed half-flat manifolds [19] — which first appeared in string compactifica-

tions in the context of mirror symmetry in the presence of NS-NS fluxes [20, 21]. In order

to distinguish the specific type of manifolds discussed in [20, 21] from the more general

family of half-flat manifolds we will denote them as half-flat mirror manifolds. A more

explicit explanation of what we understand by these manifolds can be found at the be-

ginning of section 3.1. In ref. [22] the superpotential for such manifolds, was derived and

subsequently analysed in ref. [23]. However, the analysis was restricted to the gravitational

sector (zeroth order in α′) and the gauge/matter sector was not addressed in detail. A

detailed analysis turned out to be quite involved due to the large number of terms which

appear in the reduction of a 10-dimensional gauge theory to four dimensions.

In this paper, we will show how to overcome these difficulties, using the heterotic

Gukov formula for the superpotential (for the original version of the formula in the context

of type IIA and M theory see refs. [24, 25]). Based on this approach we will explicitly

calculate the four-dimensional effective theory including the gauge field sector for heterotic

compactifications on half-flat mirror manifolds and their generalisations. This result will

allow us to address a number of questions which have been the main motivation behind

this work. What is the four-dimensional low-energy gauge group for such non Calabi-Yau

compactifications? What is the four-dimensional (gauge matter) particle spectrum? Do

any of these four-dimensional gauge matter fields pick up masses from the (geometrical)

fluxes? Is the low-energy gauge group spontaneously broken?

Let us explain in more detail how we proceed in deriving the four-dimensional effective

theory. One of the main obstacles to overcome in heterotic string compactifications is to

find a solution to the Bianchi identity for the NS-NS field strength H. Since our knowledge

about manifolds with SU(3) structure is fairly limited explicitely constructing bundles over

such spaces is an ambitious task (for recent developments see refs. [26, 27]). Nevertheless

we always have the standard embedding at our disposal where the background gauge field is

set equal to the spin connection. It represents the simplest solution to the Bianchi identity

and will be adopted in this paper. To determine the expansion of the 10-dimensional fields

into low-energy modes we will be guided by an ”perturbative principle” which has been

proposed and successfully applied to type II string theory in ref. [20, 21] and has been shown

in ref. [22] to lead to a consistent description of the gravitational sector in heterotic theories.

The basic assumption underlying this principle is that half-flat mirror manifolds (and

their generalisations) can be considered as ”perturbations” of Calabi-Yau manifolds and,

hence, that their low-energy spectrum is identical to the one of the associated Calabi-Yau
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manifolds. We will show that this principle leads to a consistent description of the heterotic

gauge field sector. In particular, we will show that the low-energy gauge group remains

E6 in agreement with the perturbative approach. This conclusion may be surprising since

the Levi-Civita connection for manifolds with SU(3) structure has, in general, a holonomy

group SO(6) ≃ SU(4) which suggests the low-energy gauge group SO(10). This is, in fact,

what has been proposed in ref. [22]. Here we will show that E6 is the correct low-energy

gauge group.

Having decided upon the expansion of 10-dimensional fields into low-energy modes we

will use the heterotic Gukov formula for the superpotential (gravitino mass)

eK/2W =
eφ

√
2K||Ω||

∫
Ω ∧ (H + idJ) , (1.1)

which was derived from first principles in ref. [22]. It provides a way of computing the

Kähler potential K and superpotential W of the low-energy theory in terms of the NS-

NS flux H and the forms Ω and J which characterise the SU(3) structure. For half-

flat mirror manifolds, both H and dJ are non-zero at zeroth order in α′ and this leads

to a superpotential which is linear in the Kähler moduli [22]. At first order in α′ the

above formula receives a contribution from the Chern-Simons correction to H. Given

the expansion of the gauge fields we can explicitely compute the Chern-Simons term and

integrate to obtain the superpotential including matter field terms.

It has been known since the early work in ref. [28] that the definition of the Kähler

moduli in terms of the 10-dimensional fields is modified at first order in α′ by a certain

combination of the matter fields. This aspect of compactifications with matter fields often

significantly complicates the task of finding the correct definitions of the low-energy fields.

In our context this problem can be quite elegantly dealt with. Due to the existence of a

Kähler-moduli dependent superpotential at zeroth order in α′ one expects the matter field

corrections to appear at order α′ in eq. (1.1). This is indeed what we will find. The correct

definition of the moduli can then be read off from these additional terms. Based on these

ideas we will carry out the full reduction for half-flat mirror manifolds [20, 22] and then

extend the results to the generalised half-flat manifolds introduced in refs. [29, 30].

The paper is organised as follows. We start with a review of heterotic Calabi-Yau

compactifications based on the standard embedding. This is mostly to fix conventions

and as a reference point for the more involved calculation in the half-flat case. Then, in

section 3, we perform the analogous analysis for half-flat mirror manifolds. In section 3.2,

we first discuss the Bianchi identity, in section 3.3 we compute the gravitino mass and,

finally, in section 3.4, we find the associated four-dimensional effective theory. For the

correct interpretation of the result it will prove useful to include H-flux which we will do

in section 3.5. Then, in section 4, we extend the results of section 3 to generalised half-flat

manifolds. Finally, in section 5, we conclude and present future directions for research.

Formulae and conventions for Calabi-Yau manifolds and the group E8 have been collected

in the appendix.
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2. Warm up: Calabi-Yau compactifications of the heterotic string

In this section we perform the compactification of the heterotic string on Calabi-Yau man-

ifolds using the standard embedding. Since this material is well-known we will keep the

discussion brief and we refer the reader to the standard textbooks, for example [31], for a

more detailed treatment. However, in view of our earlier discussion, we will perform the

computation in the gauge matter sector in an unusual way, using the Gukov formula (1.1).

2.1 The spectrum in 10 and 4 dimensions

We start with the low energy action of the heterotic string in 10 dimensions which is given

by supergravity coupled to a super-Yang-Mills theory with gauge group E8 × E8.
1 The

bosonic spectrum — which is what we are mostly interested in — is given by the graviton

GMN, the antisymmetric tensor field BMN and the dilaton φ in the gravity sector and by

the gauge fields AI
M , where I is an adjoint index of E8 ×E8 and runs from 1, . . . , 496. The

action for these fields is given by

S = −1

2

∫
e−2φ

[
R ∗ 1− 4dφ ∧ ∗dφ +

1

2
H ∧ ∗H + α′

(
TrF ∧ ∗F − trR̃2

)]
, (2.1)

where trR̃2 stands for the Gauss-Bonet combination. Here we have kept the dependence

on α′ which is going to be a useful expansion parameter. We will neglect any terms at

order α′2 or higher. The field strengths F and H are defined by

F = dA + A ∧ A , (2.2)

and

H = dB + α′(ωL − ωYM) . (2.3)

Here ωL and ωYM are the Chern-Simons three-forms

ωL = tr

(
R̃ ∧ w̃ − 1

3
w̃ ∧ w̃ ∧ w̃

)
, (2.4)

ωYM = Tr

(
F ∧ A − 1

3
A ∧ A ∧ A

)
. (2.5)

The modified spin connection one-form, w̃, is given in terms of the Levi-Civita connection,

w, by [32]

w̃MN
P = wMN

P − 1

2
HMN

P , (2.6)

and all curvature tensors denoted by R̃ are computed in terms of this modified connection.

Finally, the symbol Tr above denotes 1/30 of the trace in the adjoint of E8 × E8.

Taking the exterior derivative of eq. (2.3) one obtains the well-known Bianchi identity

dH = α′
(
trR̃ ∧ R̃ − TrF ∧ F

)
. (2.7)

1In this paper we focus on E8 × E8 and do not discuss the SO(32) case.
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The simplest solution to this equation — which we will also adopt in this paper — is the

so called standard embedding where the background gauge field (for one of the E8 group

factors) is set equal to the spin connection w̃. In the absence of H-fluxes the connection has

SU(3) holonomy and this choice of background breaks the gauge group to E6×E8. Here and

in the rest of the paper we shall always have a ”hidden sector” E8 gauge factor which we will

often omit from the discussion. The gauge matter fields which reside in four-dimensional

chiral multiplets arise from the internal components of the gauge fields and consist of h2,1

27-plets and h1,1 27-plets where h1,1 and h2,1 denote the Hodge numbers of the Calabi-Yau

manifold. Therefore the net number of families is given by |h1,1 − h2,1| = |χ|/2.
In addition to the fields discussed above there are a number of gravitational fields.

Apart from the four-dimensional metric tensor in the gravity multiplet we have h1,1 (com-

plexified) Kähler moduli, ti, and h2,1 complex structure moduli, za, as well as the axio-

dilaton s, all of them in four-dimensional chiral multiplets. Finally we have the so called

”bundle moduli” which parameterise deformations of the gauge bundle. In this paper we

will not be concerned with this last class of fields and we will ignore them.

2.2 Four-dimensional effective action

Let us move on to the four-dimensional action for the fields described above. It will be

useful to organise the discussion according to the order in α′ at which different terms

appear. Let us start with order zero. At this order, only the compactification of ten

dimensional supergravity contributes and leads to the four-dimensional supergravity sector

coupled to the moduli fields. The action is given by2

S0,kinetic = −
∫ [

1

2
R ∗1 + dφ ∧ ∗dφ +

1

4
e4φda ∧ ∗da + gijdti ∧ ∗dt̄j + gab̄dza ∧ ∗dz̄b

]

where ti denote the complexified Kähler moduli. They are obtained by expanding the

complexified Kähler form B + iJ into two-forms ωi,

B + iJ = (bi + ivi)ωi ≡ tiωi , (2.8)

with i, j, . . . = 1, . . . , h1,1. Further, za denote the complex structure moduli introduced in

eq. (A.5), φ is the four-dimensional dilaton and its partner a, the universal axion, is the

dual of the four-dimensional tensor field Bµν . The kinetic terms in (2.8) can be obtained

from the usual zeroth order Kähler potential, K0, given by

K0 = KK + Kcs + Ks , (2.9)

with

Kcs = − ln
(
K||Ω||2

)
, (2.10)

KK = − lnK , (2.11)

Ks = − log(i(s̄ − s)) , (2.12)

2For our conventions, see appendix A.
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and

s = a + ie−2φ , (2.13)

Here, K denotes the Calabi-Yau volume (A.12) and Ω is the holomorphic (3, 0) form.

Explicit expressions for KK and Kcs are given in appendix A.2. At zeroth order in α′, the

superpotential W0 vanishes and, hence, the above Kähler potential completely specifies the

theory at this order.

Let us now discuss the ten-dimensional gauge fields and their descendants in four

dimensions which appear at first order in α′. For the standard embedding case the massless

matter fields can be obtained from expanding the internal gauge-fields in (0, 1) harmonic

forms with values in the holomorphic and anti-holomorphic tangent bundle. On a Calabi-

Yau manifold these spaces are known to be isomorphic to the cohomology groups H2,1(X)

and H1,1(X) and we can, therefore, write

Aᾱ = A
(0)
ᾱ + A

(1)
ᾱ (2.14)

A
(1)
ᾱ = ||Ω||−1/3(ωi)ᾱ

β̄e
β̄
ē
β
T̄ β̄

e

P̄ CiP̄ + ||Ω||1/3(ηa)ᾱ
βe

β
eβTβ

e

P DaP . (2.15)

Here CiP̄ and DaP denote the matter fields in the 27 and 27 respectively, ωi are the

harmonic (1, 1) forms introduced earlier and the rank two symmetric tensors ηa are defined

in terms of the (2, 1) forms, see eq. (A.15). By A(0) we have denoted the background gauge

field and A(1) contains the matter field fluctuations around this background. Having chosen

the standard embedding, the background is set equal to the Calabi-Yau spin-connection,

that is

A
(0)
ᾱ = wᾱβγ̄Sβγ̄ , (2.16)

where Sβγ̄ are the generators of SU(3) ⊂ E8, defined in appendix A.3. Note that the indices

β and γ̄ should in principle be tangent space indices. We have glossed over this subtlety in

the above formula in order not to overload the notation. In (2.14) however, the nature of

indices is important, especially when taking derivatives, and therefore we have explicitely

included the vielbeins to convert between curved and tangent space indices. Note the

factors ||Ω||±1/3 in the expansion (2.15) which correspond to a particular definition of the

gauge matter fields CiP̄ and DaP . As we shall see below these factors are required in order

to make the superpotential holomorphic. Note that ||Ω|| does not depend on the Calabi-Yau

coordinates and, therefore, these additional factors do not complicate the calculation.

The kinetic terms for the gauge matter fields can be easily obtained by calculating the

field strength (specifically the components with one internal and one external leg) associ-

ated to eq. (2.15) and inserting the result into the Yang-Mills part of the 10-dimensional

action (2.1). One finds

S1,kinetic = −α′

∫ [
4gij ||Ω||−2/3dCi

P ∧ ∗dC̄jP + gab̄||Ω||2/3dD̄aP ∧ ∗dDb̄
P

]
. (2.17)

These kinetic terms can be obtained from the matter field Kähler potential

K1 = 4α′gij ||Ω||−2/3Ci
P C̄ jP + α′gab̄||Ω||2/3DaPD̄b̄

P , (2.18)
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which should be added to the zeroth order result (2.9). Up to constant normalisations this

is precisely the Kähler potential computed in ref. [33], which confirms the expansion (2.15).

The scalar potential for the gauge matter fields can be calculated by computing the

purely internal components of the field strength associated to eqs. (2.14), (2.15) and in-

serting the result into the Yang-Mills part of the 10-dimensional action (2.1). One may

then attempt to read off the superpotential and the D-terms from the result. However, as

discussed earlier, there is a simpler and cleaner way of deriving the superpotential based on

the heterotic Gukov formula (1.1). Let us follow this route and see how the known result

for the matter field superpotential can be reproduced.

In the case presently under discussion, that is Calabi-Yau compactifications in the

absence of H-flux, no superpotential arises at zeroth order in α′ as is clear from the Gukov

formula (1.1). However, at first order in α′, H can still pick up a purely internal component

due to the Chern-Simons term in eq. (2.7). Therefore, using eqs. (2.3), (2.4) and (2.5) with

the gauge field Ansatz (2.14) inserted, the Gukov formula (1.1) can be written as

W = α′

∫
Ω ∧ (ωL − ωYM) = −α′

∫
Ω ∧ Tr

(
F ∧ A − 1

3
A ∧ A ∧ A

)(1)

. (2.19)

In this equation, the pure Yang-Mills background contribution due to A(0) and its field

strength

F (0) = dA(0) + A(0) ∧ A(0) . (2.20)

is canceled by the Lorentz Chern-Simons term by virtue of the standard embedding. It

should, therefore, be omitted from the expression on the r.h.s. of eq. (2.19) which is indi-

cated by the superscript (1). Hence, only terms at least linear in A(1) or its field strength

contribute. In addition, due to the presence of Ω in eq. (2.19) only the (0, 3) piece of

the Chern-Simons term is relevant. Therefore only the (0, 2) part of F , F(0,2), enters the

calculation. Since we have expanded the gauge fields in (0, 1) harmonic forms with values

in the (anti)holomorphic tangent bundle the part of F(0,2) linear in A(1) vanishes. Let us

see more explicitly how this works. The terms which are linear in the matter fields can

schematically be written as

F (1) = dA(1) + 2
[
A(0), A(1)

]
. (2.21)

In the first term the derivative can act on the forms ωi and ηa or on the vielbeins. When

the derivatives act on the forms then, due to antisymmetrisation, we end up with exterior

derivatives, which vanish in the Calabi-Yau case. The remainder takes the form

(F (1))ᾱβ̄ = ||Ω||1/3(ηa)ᾱ
γ
[
∇β̄eγ

γ
eTγ

e

P + wβ̄β
e

γ̄
e

[Tδ
e
P , S

β
e

γ̄
e]eγ

δ
e

]
− (ᾱ ↔ β̄) + · · ·

= ||Ω||1/3(ηa)ᾱ
γ
[
∇β̄eγ

γ
e − wβ̄δ

e

γ
eeγ

δ
e

]
Tγ

e

P − (ᾱ ↔ β̄) + · · · , (2.22)

where we have focused on terms containing ηa and the dots stand for analogous terms

containing ωi . In the last equality we have used the commutator (A.26). Note that the

second term in this commutation relation does not contribute as the spin connection is a

SU(3) Lie algebra valued one-form and therefore its contraction with the metric vanishes.
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In the bracket we recognise the defining equation for the spin connection in terms of the

vielbein and, hence, the above terms vanish. The same conclusion holds for the terms

containing ωi and, hence, F (1) is zero. Thus we have indeed shown that (0, 2) part of the

field strength originates from the commutator term, that is

F(0,2) = A(1) ∧ A(1) , (2.23)

or in components

Fᾱβ̄ =
[
||Ω||−1/3(ωi)ᾱ

γ̄ T̄γ̄P̄ CiP̄ + ||Ω||1/3(ηa)
γ
ᾱTγP DaP , ||Ω||−1/3(ωj)β̄

δ̄T̄δ̄R̄CjR̄

+||Ω||1/3(ηb)
δ
β̄TδRDbR

]
. (2.24)

Based on this result, let us now perform a similar analysis for the full combination of

Chern-Simons terms in (2.19). We have already mentioned that the pure background part

in this combination cancels between the gravity and gauge field terms due to the standard

embedding. Linear terms in A(1) cannot be present as they would lead to gauge non-

invariant terms in the superpotential. Hence, we are left with quadratic and cubic terms

in A(1). However, using (2.23), it is easy to see that the terms quadratic in A(1) cancel in

eq. (2.19). Therefore we can write the superpotential for the charged fields as

W = −α′ 2

3

∫
Ω ∧ Tr

(
A(1) ∧ A(1) ∧ A(1)

)
. (2.25)

Substituting the expression (2.15) for A(1) we obtain the final result for the order α′ su-

perpotential, W1, which reads3

W1 = −1

3
α′

[
j̄P̄ R̄S̄KijkC

iP̄ CjR̄CkS̄ + jPRSK̃abcD
aP DbRDcS

]
. (2.26)

Here we have used the trace relation (A.30) and Kijk and K̃abc are the triple intersection

numbers defined in eqs. (A.18) and (A.21). This is the well-known cubic superpotential

which we have derived from the heterotic Gukov formula (1.1).

In order to compute the N = 1 supergravity potential we also need the D-terms. Given

that we know the matter field content and the Kähler potential, these can, of course, be

calculated purely from N = 1 supergravity [35]

Dx = GI(T
x)IJξJ . (2.27)

Here, GI are the derivatives of the supergravity G-function, G = K + ln|W |2, with respect

to the matter fields φI and T x denote the gauge group generators in the representation

in which ξI transforms. However, as a useful consistency check, the D-terms can also be

directly obtained from 10 dimensions using the formula [36]

Dx =

∫
F x ∧ ∗J , (2.28)

3In the context of heterotic M-theory a similar method for deriving this superpotential was recently used

in [34].
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which is similar to the Gukov formula (1.1) for the superpotential. Here x is an E6 adjoint

index. Since J is a (1, 1)-form we need the (1, 1) components of F to evaluate the expression

on the r.h.s. . They can be calculated similar to the (0, 2) component of F above, the main

difference being that antisymmetrisation of the indices does not lead to exterior derivatives

so terms with derivatives acting on forms no longer vanish. Instead, we have

Fαβ̄ = F
(0)

αβ̄
+ ||Ω||−1/3∇α(ωi)β̄

γ̄ T̄γ̄P̄ CiP̄ + ||Ω||1/3∇α(ηa)β̄
γTγP DaP

−||Ω||−1/3∇β̄(ωi)α
γTγP C̄iP − ||Ω||1/3∇β̄(η̄ā)α

γ̄T̄γ̄P̄ D̄āP̄ +
[
A(1), A(1)

]
. (2.29)

Contributions to the D-terms can only arise from terms which involve E6 generators and,

hence, recalling the commutation relations (A.25), only from the last term in the above

expression. Performing the integral in (2.28) we obtain

Dx = 4||Ω||−2/3gijC
iP̄ C̄jRkx

P̄R − ||Ω||2/3gab̄D
aP D̄b̄R̄kx

PR̄ , (2.30)

which is precisely what one obtains from the supergravity formula (2.27) applied to (2.18).

This ends our review of heterotic Calabi-Yau compactifications with standard embedding.

3. Compactification on half-flat mirror manifolds

In this section, we will compactify the heterotic string, including its gauge field sector, on

half-flat mirror manifolds [20], following the strategy outlined in the previous section. Due

to the lack of explicit constructions for these manifolds, a rigorous derivation is not really

possible. Instead we will adopt a “perturbative approach”, as in ref. [20, 21]. In general,

a Calabi-Yau manifold, Y , has a mirror dual, X and a half-flat mirror dual, X ′ obtained

when NS-NS flux is added on Y . In ref. [20] it was argued that in a certain region of the

moduli space one can view the manifold X ′ as a small variation of the manifold X. We

shall precisely work under these assumptions and we consequently denote the manifold X

as the Calabi-Yau manifold related or associated to the half-flat mirror manifold X ′. Many

of the standard Calabi-Yau methods on X can then be transferred to the half-flat mirror

manifold X ′. This approach has been successfully applied to type II mirror symmetry [20]

and to the gravitation sector of the heterotic string [22].

Let us be more explicit about this approximation and point out some of its conse-

quences. As it will become clear in the next section we will introduce parameters ei to

quantify the departure form ordinary Calabi-Yau manifolds. Therefore one of the main

assumption is that these parameters are small and terms which contain more than two

powers of ei will be neglected. By the perturbative approach we will still consider a ten-

dimensional background metric which is a product of a four-dimensional Minkowski space

and the metric on the internal manifold. For this to be a solution of the ten-dimensional

supersymmetry equations, the manifold with SU(3) structure has to obey certain condi-

tions [5, 6, 12, 15]. We do not impose these conditions on the compactification manifolds

in the first place as our purpose here is only to obtain a low energy effective action. The

condition we should however require for a consistent result, is that the (supersymmetric)

minima of the (super)potential we find here should be at points in the moduli space where
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the ten-dimensional equations are indeed satisfied. We will deal with these conditions

elsewhere [37].

After a brief review of manifolds with SU(3) structure and half-flat mirror manifolds

in the next sub-section, we will start by finding a solution to the Bianchi identity (2.7)

for half-flat mirror manifolds which is analogous to the standard embedding. Then, we

will evaluate the heterotic Gukov formula (1.1) for half-flat mirror manifolds. In the pure

Calabi-Yau case, evaluating this formula has given us information merely about the matter

field superpotential but not the Kähler potential, despite the explicit Kähler potential

dependence in eq. (1.1). The reason is that the superpotential in the standard Calabi-Yau

case is of order α′ and, hence, calculating the matter field Kähler potential (which is also of

order α′) requires evaluating eq. (1.1) at order α′2. Terms at this order are beyond the scope

of our calculation and, therefore, we resorted to a standard reduction of the Yang-Mills

action to determine the Kähler potential from the matter field kinetic terms. For half-flat

mirror manifolds, on the other hand, the torsion flux generates a superpotential at zeroth

order in α′. As a result, the Gukov formula at order α′ will provide us with information

about both the superpotential and the matter field Kähler potential. In addition, we will

be able to infer another crucial piece of information, namely the correct definition of the

Kähler moduli fields, which receive order α′ matter field corrections, as is well-known for

the Calabi-Yau case [28]. Generalising our set-up further by adding H-flux then allows

us to find an analogous correction to the definition of the complex structure moduli. As

we will see, this provides us with sufficient information to completely determine the four-

dimensional gauge matter field action at order α′.

3.1 Half-flat SU(3) structure manifolds

Before we proceed with the computation, we review some of the required properties of

manifolds with SU(3) structure and the specific sub-class of half-flat (mirror) manifolds

(for a more formal description of manifolds with SU(3) structure see for example [19]).

Manifolds with SU(3) structure are almost complex manifolds for which the structure group

of the frame bundle reduces to SU(3). They can be described in terms of an invariant two-

form J (the fundamental form) and an invariant three-form Ω which is of type (3, 0) with

respect to the almost complex structure. Manifolds with SU(3) structure can be classified

according to their intrinsic torsion τ , which is associated to the connection which preserves

the structure (that is, which annihilates the forms J and Ω). The intrinsic torsion is a

one-form taking values in su(3)⊥ where

so(6) = su(3) ⊕ su(3)⊥ . (3.1)

Here so(6) ∼ 15 and su(3) ∼ 8 denote the Lie algebras of SO(6) and SU(3), respectively,

and su(3)⊥ ∼ 3⊕ 3̄⊕1 is the part perpendicular to su(3). Unlike for Calabi-Yau manifolds,

the forms J and Ω are no longer closed and the expressions for dJ and dΩ can be used to

read off the intrinsic torsion τ and, hence, to characterise the manifold. Half-flat manifolds

are formally defined by imposing additional restrictions on dJ and dΩ, namely

d(J ∧ J) = d ImΩ = 0 . (3.2)
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These remove half of the torsion components which is why these manifolds are sometimes

also called half-integrable.

For practical purposes it is more useful to define a class of half-flat manifolds starting

from related Calabi-Yau manifolds [20]. As mentioned earlier, this perturbative approach

has the advantage of providing a fairly explicitly framework for calculations with many of

the standard Calabi-Yau techniques applicable. One starts by postulating the existence of

a set of two-forms ωi and a symplectic set of three-forms (αA, βB), where (αA) = (α0, αa)

and (αB) = (α0, αb). They are of course the analogue of the harmonic two and three

forms on a Calabi-Yau manifold and still satisfy the standard normalisation relations (A.1)

and (A.2). However, they are no longer closed but instead satisfy the identities

dωi = eiβ
0 , dω̃i = 0 , (3.3)

dα0 = eiω̃
i , dαa = dβA = 0 ,

where ei are torsion flux parameters. Apart from this modification, the properties of

Calabi-Yau manifolds listed in appendix A.2 are assumed to remain valid. In particular,

the moduli are defined by expanding the SU(3) invariant forms J and Ω into the above sets

of forms, as in eqs. (A.3) and (A.4). Then, it is easy to see that the first of the half-flat

conditions (3.2) is implied by the primitivity of the three forms (αA, βA) on a Calabi-Yau

manifold. The second condition is satisfied because the standard choice Z0 = 1 implies

that ImΩ does not contain α0 which is the only non-closed three-form. We will refer to

half-flat manifolds with the above set of forms and properties as half-flat mirror manifolds,

due to their appearance in the context of type II mirror symmetry with NS-NS flux [20].

The heterotic string on such half-flat mirror manifolds at zeroth order in α′ has been

discussed in ref. [22] and the results can be easily summarised. Since most of the standard

Calabi-Yau relations still hold it follows that the moduli Kähler potential (2.9) remains

unchanged from the Calabi-Yau case. The only modification at zeroth order in α′ is the

appearance of a superpotential [22]

W0 = eit
i , (3.4)

for the Kähler moduli ti, as can be easily seen from eq. (1.1). For later purposes it will be

useful to explicitely derive the components of the intrinsic torsion from the relations (3.3).

It is not hard to show [20] that

ταβ
γ̄ =

1

4||Ω||2 (eiω̃
i)αβᾱβ̄Ωᾱβ̄γ̄ ,

ταβ
γ = − i

2
(eiv

i)(β0)αβ
γ ,

(3.5)

with components other than the complex conjugate of the above being zero. It is important

to note that the first two indices of the torsion are of the same complex type. Further,

primitivity of β0 implies the contraction of the torsion tensor with J vanishes, that is

τmnpJ
np = 0 . (3.6)
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Hence, the torsion tensor has no components in the singlet part of su(3)⊥ ∼ 3 ⊕ 3̄ ⊕ 1.

The contorsion tensor, κ, which we shall also need later on, can be written in terms of the

torsion tensor as

κmnp = τmnp + τpmn + τpnm . (3.7)

Eqs. (3.5) and (3.6) imply that the singlet part of κ also vanishes. It is also worth pointing

out that the internal components of the field strength H are non-zero for half-flat mirror

manifolds, even in the absence of genuine NS-NS flux. This happens because the forms ωi

are no longer closed and, hence, taking the exterior derivative of the B field Ansatz (2.8)

together with eq. (3.3) one finds, apart from the usual terms involving four-dimensional

derivatives, that

H = eib
iβ0 . (3.8)

3.2 Solving the Bianchi identity

In order to apply the Gukov formula (1.1) we need to compute the field strength H from its

definition (2.3). This, in turn, requires finding a background gauge field configuration which

satisfies the Bianchi identity (2.7). Here, we would like to discuss the simplest possibility,

that is a gauge field background obtained from a standard embedding. However, things

are not quite so straightforward as we have various connections available to set the gauge

field equal to. The most immediate choice seems to be to set the gauge field equal to

the Levi-Civita connection, w, of the half-flat mirror manifold. There are two obvious

problems with such a choice. Firstly, it is the modified connection w̃ = w − H/2 which

enters the curvature term in the Bianchi identity. While this made no difference in the

Calabi-Yau case, it does here since, as we have seen in eq. (3.8), the internal part of H is

non-vanishing. Therefore, setting the gauge field equal to w means the Bianchi identity is

not strictly satisfied. Secondly, and perhaps more importantly, w (and presumably w̃ as

well) has holonomy SO(6), leading to a gauge symmetry breaking to SO(10) rather than

E6. In fact, such a breaking to SO(10) was predicted in ref. [22]. However, the perturbative

approach dictates that low-energy modes should be the same as for the Calabi-Yau case

and that, consequently, the gauge group should be E6. Such a breaking can be realised

with the torsion connection w(T ) which has SU(3) holonomy. Schematically, it is related

to w̃ by

w̃m = w(T )
m + Υ‖

m + Υ⊥
m , (3.9)

where Υ
‖
m ∈ so(3) and Υ⊥

m ∈ so(3)⊥, and the tensor Υ will be explicitly determined below.

This way of splitting up the connection w̃ is in line with the possible steps for gauge

symmetry breaking. Specifically, the first two terms preserve an E6 gauge group, while the

further breaking to SO(10) is only due to Υ⊥
m. We will show that this part can be absorbed

into a re-definition of the matter gauge fields C and D. The difference between choosing

w̃ and w
(T )
m + Υ

‖
m = w̃ − Υ⊥

m therefore amounts to a shift of the four-dimensional fields.

Generally, one would expect that a sensible choice of connection leads to a low-energy

supersymmetric vacuum with vanishing matter fields, C = D = 0, and unbroken gauge

symmetry, while less suitable choices for the background may lead to non-vanishing VEVs

for C and D and symmetry breaking (or restoration). In keeping with the perturbative
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approach we will set the gauge field equal to w
(T )
m + Υ

‖
m, so that the low-energy gauge

group at this stage is E6. As we will show, for this choice of background there is indeed

always a vacuum with C = D = 0 and E6 unbroken.

Let us try to make the above discussion more precise. We start by splitting Lie-

algebra valued forms into su(3) and su(3)⊥ parts which we denote by superscripts ‖ and

⊥, respectively. The torsion connection w(T ) takes of course values in su(3) while, for the

Levi-Civita connection, we can write4

wm = w(T )
m − κ‖

m − κ⊥
m . (3.10)

Similarly, we can also think of H as an so(6) valued one-form which can be decomposed as

Hm = H‖
m + H⊥

m . (3.11)

As the three forms βA are primitive, the explicit form (3.8) of H implies that the singlet

part in H⊥ is also zero.

Since H and κ appear on the same footing in the modified connection w̃ in eq. (2.6) it

is useful to introduce the notation

Υmnp = −
(

κmnp +
1

2
Hmnp

)
, (3.12)

which leads to eq. (3.9). Given the expressions (3.8) for H and for the (con)torsion tensor

for a half-flat mirror manifold, eqs. (3.5) and (3.7), the tensor Υ‖ takes the form

(Υ
‖
ᾱ)αβ̄ = −1

2
(eit

i)(β0)ᾱαβ̄ , (3.13)

while, using eq. (A.9), the orthogonal component can be written as

(Υ⊥
ᾱ )αβΩ̄αβγ = −i

eit
i

K gab̄Kb̄(ηa)ᾱ
γ , (3.14)

(Υ⊥
ᾱ )β̄γ̄Ωβ̄γ̄δ̄ =

eit
i

K vi(ωi)ᾱ
δ̄ .

Earlier, in eqs. (2.14) and (2.15), we have split the internal gauge field Am as Am =

A
(0)
m + A

(1)
m into a background term A(0) and fluctuation term A(1), which is linear in the

gauge matter fields C and D. Comparison of (3.14) with the Ansatz for A(1) shows that

Υ⊥ can indeed be absorbed into a re-definition of the matter fields C and D, as claimed

earlier. This means, we can set the background gauge field to w
(T )
m + Υ

‖
m instead of w̃ and

write for the gauge field Ansatz

Am = A(0)
m + A(1)

m , (3.15)

with

A(0)
m =

(
w

(T )

mαβ̄
+ Υ

‖

mαβ̄

)
Sαβ̄ , (3.16)

4Note that, although the torsion τ is supposed to be an element of su(3)⊥ and, hence, τ‖ = 0, in general

the parallel component of the con-torsion, κ‖ is non-zero. Indeed, from eq. (3.7), we find κᾱβγ̄ = −τᾱγ̄β 6= 0.

Moreover, since the singlet part of κ⊥ vanishes, this component of κ must be part of κ‖.
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and A(1) as in eq. (2.15), but with C and D re-interpreted. Here Sαβ̄ are the generators

of SU(3) in the branching E8 → SU(3) ⊗ E6 (see appendix A.3). The background A
(0)
m

now takes values in su(3) and, hence, the low-energy gauge group is E6, in line with

the perturbative approach. Since we are simply shifting Υ⊥ between background and

fluctuations without changing the total gauge field, there should be no problem with this

procedure. However, there is one practical difficulty. Given the choice (3.16) for A(0), the

background part of the Chern-Simons terms in the definition of H, eq. (2.3), does not

cancel by itself. Let us look at the order of the remainder. The perpendicular part κ⊥ of

the torsion is linear in the torsion parameters ei and its contribution to the Chern-Simons

term is of O(e2
i ). The r.h.s. of eq. (2.3) is suppressed by α′, so the resulting contribution

to H is of O(α′e2
i ). Inserting this contribution to H into the Gukov formula (1.1) a non-

vanishing contribution of O(α′e3
i ) can arise from multiplication with dJ (which by itself is

of order ei). This is two powers higher in flux than the terms we keep in our calculation

and will, hence, be discarded.

To summarise this section, we have chosen the background gauge fields to be the su(3)-

valued connection (3.16) so that the resulting four-dimensional gauge group is E6. This can

be viewed as a standard embedding of w̃ into the gauge field but with the E6 breaking part,

Υ⊥
m, of the connection being absorbed into a redefinition of the charged fields C and D.

This also represents a solution to the Bianchi identity (2.7) at order O(α′ei) and therefore

it constitutes a consistent background at this order.

3.3 Gravitino mass term at order α′

Having fixed the gauge field Ansatz, we can now proceed and evaluate formula (1.1) for

half-flat manifolds at order α′. However, we have to keep in mind that our manifolds are

no longer complex but almost complex only. This means that the complex coordinate

types of the field strength F cannot be simply obtained by taking holomorphic or anti-

holomorphic derivatives of the gauge field in complex coordinates. Rather, we should first

re-write the gauge field Ansatz in real coordinates, then differentiate to compute the field

strength in real coordinates and only afterwards project to complex coordinate types. In

real coordinates, the gauge field Ansatz (3.15), (3.16), (2.15) reads

Am = A(0)
m + A(1)

m , (3.17)

with

A(0)
m =

(
w

(T )

mαβ̄
+ Υ

‖

mαβ̄

)
Sαβ̄ (3.18)

A(1) = ||Ω||−1/3(ωi)m
n

(
T̄ nP̄ CiP̄ + TnP C̄iP

)
(3.19)

+||Ω||1/3
[
(ηa)m

nTnP DaP + (η̄ā)m
nT̄nP̄ D̄āP̄

]
. (3.20)

Here, we have adopted the convention that the antiholomorphic pieces of the generators

TnP , corresponding to the SU(3) ⊗ E6 representations (3̄,27) and (3, 2̄7), vanish, that is

TᾱP = T̄αP̄ = 0 . (3.21)
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More generally, having to work in real coordinates means that we have to be careful when

comparing to the Calabi-Yau formulae in the previous section and convert them into com-

plex coordinates first.

Our first task is to calculate the internal part of the gauge field strength F . To focus

our discussion, let us for a moment assume that the background gauge field A(0) equals

the SU(3) connection w(T ), that is, let us discard the Υ‖ piece in eq. (3.18) for now. Then,

the computation of the field strength is very similar to the computation we have already

described for Calabi-Yau manifolds. In particular, we can use the covariant derivative with

torsion, ∇(T ), associated to w(T ), to re-write the exterior derivative as

(dA)mn = ∇(T )
m An −∇(T )

n Am + 2τmn
pAp . (3.22)

This means, apart from the torsion term on the right hand side which we have to subtract,

the formula for the field strength should be the same as in the Calabi-Yau case but with

the ordinary covariant derivatives replaced by torsion covariant derivatives. Then, finally,

we also have to take into account the effect of a non-vanishing Υ‖ in (3.18). As in the

Calabi-Yau case, it will be useful to organise terms according to their power in the matter

fields C and D. Terms in F related to Υ‖ will be either pure background terms or linear

in the matter fields. The pure background terms are not particularly interesting for us. In

the Gukov formula (1.1) they lead to background terms which cancel up to higher order

terms and to terms linear in the matter fields which should be zero as a consequence of

gauge invariance. The linear, Υ‖ related terms in F , on the other hand, only result from

the commutator term in the definition of the field strength and, hence, do not involve

derivatives. These terms, as in fact the whole commutator in the expression for the field

strength, can be easily computed without the detour to real indices. Hence, for now, we

will only write the general expressions for these commutator terms in order not to overload

the equations. This understood, we find for the (internal) field strength in real indices

Fmn = F (0)
mn + ||Ω||−1/3∇(T )

m (ωi)n
qTqPC̄iP + ||Ω||−1/3∇(T )

m (ωi)n
qT̄qP̄ CiP̄ − (m ↔ n)

+2||Ω||−1/3τmn
r(ωi)r

qTqPC̄iP + 2||Ω||−1/3τmn
r(ωi)r

qT̄qP̄ CiP̄

+||Ω||1/3∇(T )
m (ηa)n

qTqPDaP + ||Ω||1/3∇(T )
m (η̄ā)n

qT̄qP̄ D̄āP̄ − (m ↔ n) (3.23)

+2||Ω||1/3τmn
r(ηa)r

qTqPDaP + 2||Ω||1/3τmn
r(η̄ā)r

qT̄qP̄ D̄āP̄

+
[
A(1)

m , A(1)
n

]
+ 2

[
Υ‖

m, A(1)
n

]
,

where F (0) denotes the background field strength computed from A(0) in eq. (3.18), and

A(1) and Υ‖ are explicitly given in eqs. (3.20) and (3.13).

Having derived this result for the field strength one could follow the ”traditional”

route and derive the four-dimensional scalar potential by computing trF 2 (as well as H2)

and integrate over the internal space. We will indeed compute a few selected terms in

the scalar potential in this way later, in order to check our results. However, given the

complexity of eq. (3.23) there is no doubt that the full calculation is rather tedious and

that reading off the correct definitions of superfields and the superpotential from the result

is likely to be difficult. For example, integrating over the internal space in the presence of
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an arbitrary number of (2, 1) and (1, 1) forms will lead to integrals which are non-standard

even in the Calabi-Yau case. Further, the background curvature F
(0)
mn enters the calculation

explicitly. Although, the Ricci tensors for manifolds with SU(3) structure in general and

half-flat manifolds in particular have been computed in refs. [38, 39], the results are fairly

complicated. At any rate, we would need those results for the somewhat unusual connection

w(T ) + Υ‖ which are not readily available. To circumvent these obstacles we would like to

base our calculation on the Gukov-formula (1.1), which provides direct information about

the gravitino mass m3/2 = eK/2W . As we will see, with a bit more work, the so-obtained

result for m3/2 can be disentangled and provides information about the Kähler potential

and superpotential.

As in the Calabi-Yau case, the superpotential at order α′ arises entirely from the

(0, 3) part of the Chern-Simons combination in (2.3). Therefore, we only need to know

the (0, 2) component, F(0,2), of the field strength which can be derived by projecting the

result (3.23) onto the (0, 2) subspace. Note that all derivatives in eq. (3.23) are torsion

covariant derivatives which commute with the almost complex structure J . Therefore,

converting to complex indices is as straightforward as for normal complex manifolds. The

second observation is that due to eq. (3.21), many of the terms in (3.23) vanish, when

written in complex indices. With these facts in mind we find

Fᾱβ̄ = 2||Ω||−1/3∇(T )
[ᾱ (ωi)β̄]

γ̄T̄γ̄P̄ CiP̄ + 2||Ω||1/3∇(T )
[ᾱ (ηa)β̄]

γTγP DaP

+2||Ω||−1/3τᾱβ̄
γ(ωi)γ

δTδP C̄iP + 2||Ω||1/3τᾱβ̄
γ(η̄ā)

δ̄
γT̄δ̄P̄ D̄āP̄ (3.24)

+2||Ω||−1/3τᾱβ̄
γ̄(ωi)γ̄

δ̄T̄δ̄P̄ CiP̄ + 2||Ω||1/3τᾱβ̄
γ̄(ηa)γ̄

δTδP DaP

+
[
A1

ᾱ, A1
β̄

]
+ 2

[
Υ

‖
ᾱ, A1

β̄

]
.

Let us compare this with the analogous formula (2.23) on a Calabi-Yau manifold. As we

can see the Calabi-Yau result corresponds to the first commutator term in the last line only,

while all other terms are new. Specifically, the first line vanishes in the Calabi-Yau case

since the covariant derivatives can be reduced to exterior derivatives which act on closed

forms. The second and third line obviously vanish for vanishing torsion τ . From eq. (3.13)

the tensor Υ‖ vanishes on a Calabi-Yau space (in the absence of H-flux) and, hence,

the last term also disappears in this case. Another important remark about the above

result concerns the origin of the second line. For complex manifolds this line would vanish

identically as, in this case, the (0, 2) component of the field strength can be constructed

from the (0, 1) component of the gauge field alone. Then, F(0,2) would depend on C and D

only but not on their complex conjugates. This shows that our detour to real indices has

been important and, without it, we would have missed the second line of the above result.5

For completeness, we also present the expression for the (1, 1) component, F(1,1), of

the field strength, although this result will not be needed in the remainder of the section.

Note that from eq. (3.5) the first two indices of the intrinsic torsion are both holomorphic

or anti-holomorphic. Therefore, the second and fourth line in eq. (3.23) do not contribute

5This can also be seen formally by observing that the torsion components ταβ
γ̄ are directly related to

the lack of integrability of the almost complex structure [19].
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to F(1,1) and we are left with

Fαβ̄ = F 0
αβ̄ + ||Ω||−1/3∇(T )

α (ωi)β̄
γ̄T̄γ̄P̄ CiP̄ + ||Ω||1/3∇(T )

α (ηa)β̄
γTγP DaP

−||Ω||−1/3∇(T )

β̄
(ωi)α

γTγP C̄iP − ||Ω||1/3∇(T )

β̄
(η̄ā)α

γ̄T̄γ̄P̄ D̄āP̄ (3.25)

+
[
A1

α, A1
β̄

]
+

[
A1

α, K̄
‖

β̄

]
+

[
Υ‖

α, A1
β̄

]
.

Terms proportional to E6 generators in this expression can only arise from the first com-

mutator term in the last line, just as for Calabi-Yau manifolds. Therefore, by virtue of

eq. (2.28), the D-terms will be unchanged from the Calabi-Yau case and are given by

eq. (2.30).

Let us now compute the (0, 3) component of the Chern-Simons term. Cubic terms

in the matter fields only arise from (A(1))3 and should, therefore, be unchanged from the

Calabi-Yau case. This means the standard cubic terms (2.26) in the superpotential are also

present in the half-flat case. Terms which do not contain charged fields cancel up to higher

order terms, while linear terms are absent due to gauge invariance. Thus the only new

terms we can expect in the superpotential are quadratic terms in the gauge matter fields.

They arise from linear matter field terms in F(0,2), that is the first three lines of eq. (3.24)

and the last term involving Υ‖, multiplied with A(1), as well as from the Υ‖ ∧ (A(1))2 term

contained in A3.6

Let us denote by F (1) the part of F(0,2) linear in matter fields but excluding the

contributions from Υ‖ for now. The quadratic matter terms in the Yang-Mills Chern-

Simons form not related to Υ‖ can then be written as

tr(F (1) ∧ A(1))ᾱβ̄γ̄ = 6||Ω||−2/3τ[ᾱβ̄
γ(ωi)γ̄]

δ̄(ωj)γδ̄C
iP̄ C̄j

P̄ (3.26)

+6||Ω||2/3τ[ᾱβ̄
γ(ηa)γ̄]

δ(η̄b̄)γδD
aP D̄b̄

P

+6

[
∇(T )

[ᾱ (ηa)β̄
γ(ωi)γ̄]γ + τ[ᾱβ̄

δ̄(ωi)γ̄]γ(ηa)δ̄
γ

+∇(T )
[ᾱ (ωi)β̄|γ|(ηa)γ̄]

γ + τ[ᾱβ̄
δ̄(ηa)γ̄]

γ(ωi)δ̄γ

]
Ci

P DaP ,

where we have used the trace formula (A.29).

To obtain the superpotential we have to integrate the contraction of this formula with

Ωᾱβ̄γ̄ . In the second line, we can integrate by parts to move the derivative to ωi and we

obtain
∫

tr(F (1) ∧ A(1)) ∧ Ω = i

∫
τᾱβ̄

δ̄

[
(ωi)γ̄γ(ηa)δ̄

γ − (ωi)δ̄γ(ηa)γ̄
γ

]
Ωᾱβ̄γ̄Ci

P DaP

+2i

∫ [
∇(T )

ᾱ (ωi)β̄|γ|(ηa)γ̄
γ + τᾱβ̄

δ̄(ηa)γ̄
γ(ωi)δ̄γ

]
Ωᾱβ̄γ̄Ci

P DaP

+i||Ω||−2/3

∫
τᾱβ̄

γ(ωi)γ̄
δ̄(ωj)γδ̄Ω

ᾱβ̄γ̄CiP̄ C̄j
P̄ (3.27)

+i||Ω||2/3

∫
τᾱβ̄

γ(ηa)γ̄
δ(η̄b̄)γδΩ

ᾱβ̄γ̄DaP D̄b̄
P .

6Note that quadratic terms in the charged fields which involve the SU(3) spin connection should vanish

by the same arguments as in the Calabi-Yau case.
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This formula looks complicated, but there are a number of simplifications. Recall from (3.5)

that τᾱβ̄
δ̄ is a primitive (1, 2) form and, therefore, the combination τᾱβ̄

δ̄Ωᾱβ̄γ̄ is symmetric

in the indices (δ̄, γ̄). On the other hand, the bracket in the first line is explicitely anti-

symmetric in these indices. Hence, the first line vanishes. Further, in the second line, the

indices [ᾱ, β̄] are antisymmetrised so that the covariant derivative can be converted into

an exterior derivative. Explicitly, we have

2∇(T )
[ᾱ ωβ̄]γ = (dω)ᾱβ̄γ − 2τᾱβ̄

δ̄ωδ̄γ , (3.28)

and, therefore, the torsion drops out from the second line and only dωi appears. This can

be replaced using the half-flat mirror relations (3.3) which reduces the second line to the

integral

iei

∫
(β0)ᾱβ̄γ(ηa)γ̄

γΩᾱβ̄γ̄ = 2eiKa . (3.29)

Here Ka denotes the derivative of the complex structure Kähler potential Ka = ∂K(z)
∂za . In

order to carry out the integral, we have used the definition (A.15) of ηa and the Kodaira

formula (A.8) as well as the standard choice Z0 = 1.

Now we are left with having to evaluate the last two lines in eq. (3.27). First note

from (3.5) that the contraction of the torsion τᾱβ̄
γ with Ωᾱβ̄γ̄ can be written as

τᾱβ̄
γΩᾱβ̄γ̄ =

i

4Keig
ij(ωj)

γγ̄ . (3.30)

Then, the last two lines in eq. (3.27) lead to the integrals

σlij =
i

4K

∫
(ωl)

γγ̄(ωi)γ̄
δ̄(ωj)γδ̄ , (3.31)

and

σ̃jab̄ =
i

4K

∫
(ωj)

γγ̄(ηa)γ̄
δ(η̄b̄)γδ . (3.32)

These integrals are non-standard on a Calabi-Yau manifold and presumably difficult to

compute. However, we will not need their general values but merely their contractions with

the Kähler moduli vi. Using (A.3), (A.6) and (A.16) these contractions can be explicitly

computed and we find

vlσlij = gij , vj σ̃jab̄ =
1

4
gab̄ , (3.33)

where gij and gab̄ are the Kähler and complex structure moduli space metrics.

Combining these results we can finally write eq. (3.27) as

∫
(F (1)∧A(1))∧Ω=α′

[
iekg

kl
(
||Ω||−2/3σlijC

iP̄ C̄j
P̄ +||Ω||2/3σ̃lab̄D

aPD̄b̄
P

)
+2eiKaC

iP̄ Da
P̄

]
.

(3.34)

To obtain all quadratic matter field terms in the gravitino mass we still have to add the

terms related to Υ‖. They arise from terms of the form Υ‖ ∧ (A(1))2 which are contained

in both the F ∧ A and A3 terms of the Yang-Mills Chern-Simons form. Taking all the
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factors into account we get the following contribution to the gravitino mass from terms

proportional to Υ‖

∫
ωYM ∧ Ω

∣∣∣∣
Υ

= −2iα′

∫
Υ

‖

ᾱαδ̄
(ωi)β̄

δ̄(ηa)γ̄
αΩᾱβ̄γ̄Ci

P DaP (3.35)

= iα′ejt
j

∫
(β0)ᾱαδ̄(ωi)β̄

δ̄(ηa)γ̄
αΩᾱβ̄γ̄Ci

P DaP ,

where we have used eq. (3.13). This integral is similar to the ones discussed above and can,

in fact, be written in terms of σ̃iab̄ defined in (3.32). However, we will not need its explicit

form and simply introduce the symbol Σia

Σia = i

∫
(β0)ᾱαδ̄(ωi)β̄

δ̄(ηa)γ̄
αΩᾱβ̄γ̄ , (3.36)

such that ∫
ωYM ∧ Ω

∣∣∣∣
Υ

= α′ejt
jΣiaC

i
P DaP . (3.37)

To summarise this section let us write the final formula for the gravitino mass at order

α′ which is given by the sum of eqs. (2.26), (3.4), (3.34) and (3.37) and reads

m3/2 ≡ eK/2W = eK0/2

{
eit

i − 1

3
α′

[
j̄P̄ R̄S̄KijkC

iP̄ CjR̄CkS̄ + jPRSK̃abcD
aP DbRDcS

]

+α′

[
iekgkl

(
||Ω||−2/3σlijC

iP̄ C̄j
P̄ + ||Ω||2/3σ̃lab̄D

aPD̄b̄
P

)

+2eiKaC
iP̄ Da

P̄

]
+ α′eit

iΣjaC
j
P DaP

}
. (3.38)

Here, K0 stands for the Kähler potential at zeroth order in α′. This is the one of the

main results of the paper. In the following sections we will analyse its interpretation and

implications for the four-dimensional effective theory.

3.4 Four-dimensional effective theory

Eq. (3.38) provides us with the with the supergravity G-function, G = K + ln |W |2 =

ln |m3/2|2. This, together with the gauge kinetic function which has already been computed

in ref. [22], completely determines the four-dimensional supergravity Lagrangian. It seems,

we should, therefore, be able to find the complete low-energy theory from the results so far.

However, eq. (3.38) as stands is still expressed in terms of the 10-dimensional fields and it

first needs to be re-written in terms of the correct four-dimensional superfields. In other

words, we need to know the definition of the four-dimensional superfields in terms of the

underlying 10-dimensional fields. It is not obvious that this information can be extracted

from the above results. To analyse the situation it is useful to compare eq. (3.38) with a

general expression for the gravitino mass, expanded to linear order in α′. Let us denote

by φ0, K0 and W0 the moduli fields, the Kähler potential and the superpotential at zeroth
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order in α′ and by φ, K and W their counterparts at order first order in α′. We can write

φ = φ0 + α′δφ ,

K(φ) = K0(φ0) + α′δK , (3.39)

W (φ) = W0(φ0) + α′(δW + ∂φWδφ) ,

where δφ is a correction to the definition of the moduli fields which is expected [28] at

order α′. Further δK and δW are the changes of the Kähler potential and superpotential7

at order α′. The gravitino mass can then be expanded as8

m3/2 = eK/2W = eK0(φ0)/2
[
W0(φ0) + α′ (δW + WδK + ∂φWδφ)

]
. (3.40)

Let us now compare this general expression to our explicit result for the gravitino

mass (3.38). Clearly, the first term in eq. (3.38) corresponds to the superpotential at

zeroth order in α′, that is, to the term W0(φ0) in our general notation. The rest of the first

line is the well-known cubic superpotential for the matter fields which arises at order α′ and

it should be part of δW . All other terms in eq. (3.38) are of order α′ and non-holomorphic

and, hence, must correspond to the last two terms in eq. (3.40), that is, they must be due to

α′ corrections to the definition of the moduli fields or to the Kähler potential. Given that

we have a Kähler moduli superpotential at zeroth order in α′ we indeed need correction

terms which convert this superpotential into a function of the proper order α′ superfields.

What we have to decide is which of the terms in the second and third line of (3.38) are

absorbed into a re-definition of the Kähler moduli ti. It turns out the correct choice is to

absorb all terms in the second line of (3.38) into ti while interpreting the term in the third

line as a correction to the Kähler potential. This is suggested by the fact that corrections

to K should appear multiplied with W (as in eq. (3.40)) which is only the case for the

last term in (3.38). Also, we know from the standard Calabi-Yau case [28] that the first

two terms in the second line should definitely be part of the re-definition of ti, so the only

non-trivial question is really about the last two terms in (3.38). We will check towards the

end of this section that our choice for these remaining two terms is indeed correct.

Let us now formalise the previous discussion. We write the relation between the zeroth

order Kähler moduli ti and their order α′ counterparts T i as

T i = ti + α′Y i . (3.41)

where the correction terms Y i are explicitly given by

Y i = igij
(
||Ω||−2/3σjklC

kP̄ C̄ l
P̄ + ||Ω||2/3σ̃jab̄D

aPD̄b̄
P

)
+ 2KaC

iP̄ Da
P̄ . (3.42)

From eq. (3.38), the superpotential is then given by

W = eiT
i − α′

3
j̄P̄ R̄S̄KijkC

iP̄ CjR̄CkS̄ − α′

3
jPRSK̃abcD

aP DbRDcS . (3.43)

7It is convenient to separate out the change of the superpotential due to the re-definition of the moduli

fields explicitly while writing the change in the Kähler potential as a single term.
8Since we are working to first order in α′, we do not need to distinguish between corrected and uncorrected

quantities in the order α′ part of this expression.
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Note that the torsion part of the superpotential has absorbed the terms in the second line

of (3.38) and, as a result, is now expressed in terms of the corrected superfields, T i, as is

should.

The only remaining term is the last one in (3.38). It gives rise to a Kähler potential

correction so that the total Kähler potential, K = K0(φ0) + δK, can be written as

K = K0(s, s̄, t, t̄, z, z̄) + α′
[
ΣiaC

i
P DaP + c.c.

]
, (3.44)

where the moduli Kähler potential K0 is given in eq. (2.9). The Kähler moduli part, KK ,

of K0 still needs to be expressed in terms of the corrected moduli fields T i, so we write

KK(t, t̄) = KK(T − α′Y, T̄ − α′Ȳ ) = KK(T, T̄ ) − α′KiY
i − α′K̄iȲ

i + O(α′2) , (3.45)

where Ki is the derivative of the Kähler potential with respect to ti. Using the Calabi-Yau

identity

Kig
ij = 2ivj , (3.46)

together with eqs. (3.33) we find

KiY
i = −2||Ω||−2/3gklC

kP̄ C̄ l
P̄ − 1

2
||Ω||2/3gab̄D

aPD̄b̄
P + 2KiKaC

iP̄ Da
P̄ . (3.47)

The Kähler potential (3.44) can then be written as

K = K0(s, s̄, T, T̄, z, z̄) + α′
[
4||Ω||−2/3gijC

iP̄ C̄j
P̄ + ||Ω||2/3gab̄D

aP D̄b̄
P

+
(
(Σia − 2KiKa)C

i
P DaP + c.c.

)]
. (3.48)

Having corrected the Kähler moduli at order α′ it seems likely the same has to be done to

the complex structure moduli, so we write the α′ corrected complex structure moduli Za as

Za = za + α′Y a . (3.49)

From the result (3.38) we have no direct information about the corrections Y a since the ze-

roth order superpotential is independent of the complex structure moduli. One guess might

be that the additional δK term (the term proportional to Σia in eq. (3.48)) we have found

is responsible for the re-definition of the complex structure moduli. This would imply that

Y a = Σia
bCi

P DaP (3.50)

for some tensor Σia
b with the property KbΣia

b = Σia. Later we will introduce H-flux

which provides us with a zeroth order superpotential for the complex structure moduli

and explicit information about the redefinition of za. We will then confirm the above

expression for Y a. Accepting our guess for now we can write the Kähler potential as

K = K0(s, s̄, T, T̄, Z, Z̄) + α′
[
4||Ω||−2/3gijC

iP̄ C̄j
P̄ + ||Ω||2/3gab̄D

aP D̄b̄
P

−2
(
KiKaC

i
P DaP + c.c.

)]
. (3.51)
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Eqs. (3.51) and (3.43) represent our final result for the order α′ Kähler potential and

superpotential from standard embedding compactifications of the heterotic string on half-

flat mirror manifolds. The matter field part is E6 invariant and identical to the one found

for Calabi-Yau compactifications with standard embedding. The only difference to the

Calabi-Yau case is the zeroth order torsion superpotential for the Kähler moduli which is

simply added to the standard cubic superpotential for the matter fields. Although the CD

terms in the Kähler potential (3.51) (and the field re-definitions (3.42)) look unconventional

they are independent of the torsion parameters ei and should, therefore, be already present

in the Calabi-Yau case. To our knowledge they have not been explicitly computed before,

although their possible existence has been anticipated in ref. [33]. These terms do not

contribute to the matter field kinetic terms (although they do contribute to mixed matter

field/moduli kinetic terms) and, in the Calabi-Yau case, they affect the scalar potential only

at higher order in α′. It is not surprising, therefore, that these terms are usually omitted.

A curious feature of our result is that the order α′ re-definition of Kähler and complex

structure moduli is quite different, see eqs. (3.42) and (3.50). In particular, CC̄ and DD̄

terms appear for the Kähler moduli only. This means that the standard kinetic terms for

both the (1, 1) and (2, 1) matter fields are linked to the re-definition of the (1, 1) moduli.

Should we have expected new terms in the matter field sector compared to the Calabi-

Yau case? Given that our set-up leads to an E6 invariant low-energy theory, the only

additional terms allowed from gauge invariance are Ci
P DaP terms in the superpotential.

We know that such terms are definitely absent in the Calabi-Yau case and this can be

understood from the fact that we have required that the matter fields C and D in eq. (2.15)

be massless. By turning on fluxes we may expect that some of these fields become massive,

but the above calculation shows that a supersymmetric mass term is not generated.9 We

interpret this as an indication that 2-index couplings (fluxes), λia, are needed for these

terms to appear in the superpotential. We will in fact see that for the generalised half-flat

manifolds discussed in section 4, for which torsion parameters have one Kähler and one

complex structure index, CD superpotential terms indeed arise.

One obvious simple check of our results is to compare the D-term, as obtained from

the Gukov-type formula (2.28), with the four-dimensional supergravity expression (2.27)

after inserting the above results for Kähler potential and superpotential. We recall that

the Gukov-type formula predicts the D-terms for half-flat mirror manifolds should be un-

changed from the Calabi-Yau case. This is indeed what one finds when inserting (3.51)

and (3.43) into the supergravity formula (2.27).

3.5 Including H-flux

An obvious extension of our set-up is to include NS-NS flux. This will generate a zeroth

order superpotential for the complex structure moduli, in addition to the Kähler moduli

superpotential from torsion already present. As indicated before, this can provide us with

9It is not hard to see that at the level of the N = 1 potential, terms of the type (eiT
i)gjkC

j
P C̄kP and

similar ones for the D-fields are in fact generated at first order in α′ making these fields indeed massive. Note

that this is only possible at this order in α′ due to the appearance of the zeroth order superpotential (3.4).
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additional information about the complex structure moduli and consistency checks of our

results.

For simplicity, we start with NS-NS flux of the form Hflux = paβ
a, with flux parameters

pa. This leads to a zeroth order superpotential contribution

W0,flux =

∫
Ω ∧ H = paz

a . (3.52)

which, in analogy with the torsion superpotential, is linear in the moduli.

Does the NS-NS flux lead to any corrections at first order in α′? We have to remember

that, via eq. (2.6), H appears in the connection which enters the Bianchi identity. The

resulting change in the gravitino mass can be computed directly from eq. (3.35) with

Υ replaced by Hflux and making use of formulae (A.9). Together with the zeroth order

term (3.52) this leads to the following additional terms in the gravitino mass due to flux

eK/2W
∣∣∣
flux

= eK0/2
[
paz

a + α′(pb + pcz
cKb)Σia

bCi
P DaP

]
, (3.53)

where we have defined the quantity

Σia
b = − i∫

Ω ∧ Ω̄
gāb

∫
(χ̄ā)ᾱαδ̄(ωi)β̄

δ̄(ηa)γ̄
αΩᾱβ̄γ̄ . (3.54)

Let us now analyse this result by comparing it to the general expression (3.40) for the

gravitino mass, as we did before. The order α′ terms in eq. (3.53) are non-holomorphic and,

hence, they should correspond to either corrections to the Kähler potential or re-definitions

of moduli fields. The last term in eq. (3.53) is proportional to the flux superpotential and

this suggests it should be viewed as a correction to the Kähler potential. This interpretation

is, in fact, required for consistency, given that we have declared the last term in (3.38) to

be a Kähler potential correction as well. Indeed, in the presence of flux, we need another

term to combine with the last one in eq. (3.38) to produce the total torsion and flux

superpotential as a pre-factor. One can check, using relation (A.9), that

KbΣia
b = Σia , (3.55)

with Σia defined in eq. (3.36) which provides a confirmation of this interpretation. The

second term in eq. (3.53), on the other hand, coincides with the correction (3.50) to the def-

inition of the complex structure moduli which we have anticipated earlier. Hence, this term

combines with the flux superpotential and changes the moduli za into their α′ corrected

counterparts Za.

To summarise, we have confirmed our earlier result (3.51) for the Kähler potential and

the superpotential is given by (3.43) plus the addition flux contribution

Wflux = paZ
a . (3.56)

3.6 Consistency with compactification results

The identification of low-energy data from the gravitino mass (3.38), (3.53) in the last sub-

section has, in parts, relied on a suggestive interpretation rather than strict conclusion.

– 23 –



J
H
E
P
1
2
(
2
0
0
7
)
0
8
1

It would, therefore, be desirable to have an independent and meaningful check through a

direct compactification of the 10-dimensional theory. We have argued before that this is a

difficult task, firstly due to the large number of terms in the potential and secondly due

to the presence of certain integrals which are not standard on Calabi-Yau manifolds. We

have already encountered such integrals in the calculation of the gravitino mass, although

we have managed to proceed without knowing their explicit form. One way to simplify

the calculation is to consider an associated Calabi-Yau manifold with only a single Kähler

modulus. Then the forms ωi can be replaced by the almost complex structure J and

the integrals involved become significantly simpler. The number of terms is also reduced,

although it is still considerable. In addition to assuming h1,1 = 1, we will, therefore, focus

on a specific class of terms, namely scalar potential terms of the form DDC̄ and CCD̄

together with their complex conjugates.

Let us explain how these terms appear when compactifying the 10-dimensional action.

First of all, cubic terms in the matter fields appear from F 2, taking terms linear in the

charged fields in one F (either from the explicit terms in (3.23) or from the last commutator)

and terms quadratic in the matter fields in the second F (from the first commutator

in (3.23)). Another source for cubic matter field terms is H2 with one H taken to be the

zeroth order part (3.8) from torsion and the other the Chern-Simons form (in fact only

the term A3 can contribute). For the case of one Kähler modulus, it is not hard to check

that all of the derivative terms from (3.23) drop out — either directly or after integration

by parts — and only the linear terms with no derivative contribute. After a long but

straightforward calculation one obtains

V = . . . + α′ e
−2φ4

K

[
1

K||Ω||8/3

(
3i

2

eb

v
+

e

2

)
Kc̄g

c̄cK̃abcjPRSD
aPDbRC̄S

+
v2

3K||Ω||4/3

(
3i

2

eb

v
+

e

2

)
KājP̄ R̄S̄C P̄ CR̄D̄āS̄

]
+ c.c. , (3.57)

where the dots stand for other type of terms we have not computed here.

On the supergravity side, starting from the Kähler potential (3.51) and superpoten-

tial (3.43), we can compute the above terms for general h1,1 and only at the very end take

the limit of one Kähler modulus. We note that the |W |2 term in the supergravity potential

cannot produce the type of terms considered here. Therefore we only have to consider the

F -part of the supergravity potential. To get a contribution proportional to C2 or D2 to an

F-term we need to consider the derivatives ∂CW or ∂DW , respectively. These derivatives

are already at order α′ and, hence, need to to be multiplied by an order zero piece. It

is clear that the CC̄ and DD̄ terms in the matter field Kähler potential cannot lead to

cubic terms mixing C and D. Therefore the term CD in the Kähler potential is crucial in

order to reproduce the terms in (3.57). To see precisely which terms do contribute one has

to compute the Kähler metric, including the complex structure moduli, from (3.51) and

invert this metric at order α′. Schematically, one then finds the following relevant terms

V ∼ DCW
(
gC̄CDC̄W̄ + gCz̄Dz̄W̄ + gCT̄ DT W̄

)
, (3.58)
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plus similar terms with C and D exchanged. From the first term in the bracket one keeps

the derivative on the Kähler potential times W0, from the second term the derivative on

the complex structure Kähler potential times W0 while the full DT W̄0 contributes from the

last term. Computing explicitely all terms and taking the limit of one Kähler modulus, it is

not hard to see that the result indeed reproduces (3.57). This constitutes a powerful check

of our results. In particular, it confirms that the CD terms should indeed be present in the

Kähler potential (3.51) and that the identifications of various terms in (3.38) was correct.

4. Generalised half-flat manifolds

In the final part of this paper let us discuss an extension of the results obtained in the

previous section to more general manifolds with SU(3) structure which we refer to as

generalised half-flat manifolds. These manifolds were proposed in ref. [29, 30]. Working

out the effective theories associated to these manifolds is not conceptually new, but rather

a straightforward generalisation of the results obtained in the previous section.

Let us briefly present the setup for these compactifications, relying on the conventions

of ref. [23]. We consider a manifold with SU(3) structure and two-forms ωi and three-forms

(αA, βB) which obey the following algebra

dωi = piAβA − qA
i αA ,

dαA = piAω̃i , dβA = qA
i ω̃i , (4.1)

dω̃i = 0 ,

with the constants piA and qA
i subject to the constraints

piAqA
j − pjAqA

i = 0 . (4.2)

These relations replace the analogous relations (3.3) for half-flat mirror manifolds. In ad-

dition, it is assumed that the link of these manifolds with the related Calabi-Yau manifolds

is precisely as for half-flat mirror manifolds. Half-flat mirror manifolds corresponds to the

particular choice pi0 = ei, pia = 0 and qA
i = 0.

The zeroth order superpotential for generalised half-flat manifolds is more complex

than the one for half-flat mirror manifolds, eq. (3.4), and contains mixed Kähler and

complex moduli terms as well. It is given by [23]

W0 = piAtiZA − qA
i tiGA ≡ Eit

i , (4.3)

where GA are the derivatives of the complex structure prepotential G. To make the analysis

similar to the half-flat case we have introduced the notation

Ei(Z) = piAZA − qA
i GA . (4.4)

With this notation, much of the calculations for half-flat mirror manifolds can be carried

over to the present case by replacing the torsion parameters ei with Ei. In particular,

eq. (3.30) still holds with this replacement. Hence, we can directly obtain the result for
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the last integrals in eq. (3.27). Working out the second line in eq. (3.27) however, requires

some modifications. The result previously given by eq. (3.29) now changes to

i

∫
(dωi)ᾱβ̄γ(ηa)γ̄

γΩᾱβ̄γ̄ = −2

∫
dωi ∧ χa = 2(pia − qB

i GBa) + 2KaEi (4.5)

where the last equality follows from straightforward computations using the standard

Calabi-Yau relations (A.9). Finally one can show that Υ‖ in eq. (3.13) can now be written

as10

(Υ
‖
ᾱ)αβ̄ = −1

2
tidωi = −1

2
ti(piAβA − qA

i αA) . (4.6)

With this, and using again formulae (A.9), the result in eq. (3.37) becomes
∫

ΩYM ∧ Ω

∣∣∣∣
Υ

= α′ti
[
(pia − qA

i GAa) + Ka(piaZA − qA
i GA)

]
Σjb

aCj
P DbP . (4.7)

Collecting the above contributions, the final formula for the gravitino mass in this more

general case then takes the form

eK/2W = eK0/2

{
Eit

i − 1

3
α′

[
j̄P̄ R̄S̄KijkC

iP̄ CjR̄CkS̄ + jPRSK̃abcD
aP DbRDcS

]
(4.8)

+α′

[
iEkg

kl
(
||Ω||−2/3σlijC

iP̄ C̄j
P̄ + ||Ω||2/3σ̃lab̄D

aPD̄b̄
P

)

+2EiKaC
iP̄ Da

P̄

]
+ α′

[
(pia − qA

i GAa)t
i + KaEit

i
]
Σjb

aCj
P DbP

+2α′(pia − qB
i GBa)C

i
P DaP

}
.

Given the expression (4.3) for the torsion superpotential, it follows that the interpretation

of most terms above is the same as for the half-flat mirror case (3.38): the first line is part of

the superpotential at order α′, the second line should be interpreted as a redefinition of the

Kähler moduli ti like in eqs. (3.41) and (3.42) while the first terms in the last line are analo-

gous to the last terms in eq. (3.53) and correspond to the redefinition of the complex struc-

ture moduli (3.50) and the change in the Kähler potential from eq. (3.48). The only differ-

ence compared to the cases studied before is the last term above. As it is holomorphic there

is no need to absorb it into a redefinition of moduli and it turns to be part of the superpo-

tential. On general grounds, this is actually not surprising given that we now have the cou-

plings piA and qA
i which allow holomorphic (and gauge invariant) terms such as piaC

i
P DaP.

To summarise, for the generalised half-flat manifolds, characterised by the alge-

bra (4.1), the Kähler potential is unchanged from the half-flat mirror case and still given

by eq. (3.51), while the superpotential now reads

W = pi0T
i + piaT

iZa − qA
i T iGA(Z) + 2α′(pia − qA

i GAa)C
i
P DaP (4.9)

−α′

3

[
KijkjP̄ R̄S̄CiP̄ CjR̄CkS̄ + K̃abcjPRSDaPDbRDcS

]
.

10It is not hard to check that for the generalised half-flat case the the tensor Υ⊥ takes a form similar to

the one in the half-flat mirror case, eq. (3.14). This allows us again to absorb these pieces into a redefinition

of the charged fields C and D.
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5. Conclusions

In this paper, we have studied heterotic string compactifications at order α′ on specific

classes of manifolds with SU(3) structure, namely half-flat mirror manifolds and their gen-

eralisations. These manifolds are related to certain Calabi-Yau manifolds which facilitates

the explicit computation of the associated four-dimensional effective theories. In order to

solve the Bianchi identity, we have employed the simplest possibility for the choice of the

internal gauge bundle, a variant of the well-known standard embedding. The spin con-

nection of half-flat manifolds has in general SO(6) holonomy which suggests a low-energy

gauge group SO(10). However, we were able to absorb the pieces of the connection which

would have been responsible for this breaking to SO(10) into a vacuum redefinition of the

matter fields. For the fields re-defined in this way, we found that the E6 gauge symmetry

is restored. The four-dimensional effective theory contains a dilaton s, h1,1 Kähler moduli

T i and h2,1 complex structure moduli Za, where h1,1 and h2,1 are the Hodge numbers of

the associated Calabi-Yau manifolds. In addition, there are h1,1 matter fields CiP̄ in the

27 representation and h2,1 matter fields DaP in the 27 representation of E6. Hence, the

low-energy field content is precisely the same as for analogous Calabi-Yau compactifications

of the heterotic string. The half-flat manifolds are defined in the large radius and large

complex structure limit and it is in this limit that the effective four-dimensional theory has

been derived. For the Kähler potential we find

K = Ks(s, s̄) + KK(T, T̄ ) + Kcs(Z, Z̄)

+α′
[
4||Ω||−2/3gijC

iP̄ C̄j
P̄ + ||Ω||2/3gab̄D

aP D̄b̄
P − 2

(
KiKaC

i
P DaP + c.c.

)]
,(5.1)

where ||Ω||2 = exp(KK − Kcs) and Ks, KK and Kcs are the standard Calabi-Yau Kähler

potentials for the dilaton, the Kähler moduli and the complex structure moduli. Explicit

formulae for these Kähler potentials are given in eqs. (2.12), (A.17) and (A.22), respectively.

The superpotential is given by

W = pi0T
i + piaT

iZa − qA
i T iGA(Z) + 2α′(pia − qA

i GAa)C
i
P DaP (5.2)

−α′

3

[
KijkjP̄ R̄S̄CiP̄ CjR̄CkS̄ + K̃abcjPRSDaPDbRDcS

]
.

where GA are the derivatives of the complex structure pre-potential G, given in eq. (A.20),

and κijk and κ̃abc are the intersection numbers of the associated Calabi-Yau manifolds and

its mirror. Further jPRS and jP̄ R̄S̄ are the cubic E6 invariant tensors. This expression for

the superpotential is given for the generalised half-flat manifolds discussion in section 4.

To specialise to half-flat mirror manifolds one should set pi0 = ei, pia = 0 and qA
i = 0.

Note that in this case the CD mass term in W vanishes. NS-NS flux with flux parameters

ǫA and µA leads to an additional superpotential of the usual form

Wflux = ǫ0 + ǫaZ
a − µAGA . (5.3)

For completeness, we also mention that the gauge kinetic function f is given by the dilaton,

f = s, at order α′, as expected for heterotic compactifications.
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Let us now come back to some of the questions raised in the introduction. We have

seen that the low-energy theory can be written in an E6 invariant way due to a suitable

choice of the gauge connection and a related definition of the matter fields C and D.

With the effective theory at hand, we should now re-assess the question of what the low-

energy gauge group actually is in the light of a possible spontaneous symmetry breaking

in the effective theory. It is clear from the above results that for all choices of torsion

and flux parameters, there exists a supersymmetric vacuum at C = D = 0 where the

E6 gauge group is, of course, unbroken. The existence of this vacuum means that our

choice of gauge bundle was sensible and has provided a suitable background around which

to consider fluctuations. When the CD term in the superpotential is present (that is,

for generalised half-flat manifolds but not for half-flat mirror manifolds) there is also the

possibility of a supersymmetric vacuum with C,D 6= 0 and of the order of the torsion

parameters. The gauge symmetry in this vacuum is presumably broken to SO(10) or even

smaller. However, given that the torsion parameters are presumably quantised in string

units the C and D VEVs would be rather large and it is doubtful if this vacuum can

be considered as consistent in a theory derived as an expansion in the matter fields. We

will investigate this question in detail in a forthcoming publication [37]. For the further

discussion, let us focus on the E6 preserving vacuum at C = D = 0. For generalised half-flat

manifolds, when the term CD in the superpotential is present, some or all of the vector-like

27, 27 pairs receive a large mass and will be removed from the low-energy spectrum. This

is an explicit realisation of the usual lore by which vector-like pairs of matter fields are

removed and, at low energy, one remains with a net number of families given by the Euler

number |χ|/2 = |h1,1 − h2,1|. The above results open up various avenues for exploring the

phenomenology of the heterotic string on manifolds with SU(3) structure, including the

question of heterotic moduli stabilisation [23], the precise nature of the family anti-family

pairing and, if supersymmetry breaking vacua are found, the computation of soft masses

and parameters. We hope to report on these issues in a future publication [37].
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A. Conventions and notations

In this appendix we present our conventions and formulae which we use throughout the

paper.
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A.1 General conventions

We denote real indices on the Calabi-Yau manifold by m,n, . . . = 1, . . . , 6, holomorphic ones

by α, β, . . . = 1, 2, 3 and anti-holomorphic ones by ᾱ, β̄, . . . = 1, 2, 3. Tangent space indices

are referred to with the same symbols as above, but with an additional tilde underneath,

so for example we use m
˜

for a real tangent space index.

Indices i, j, . . . = 1, . . . , h1,1 and a, b, . . . = 1, . . . , h2,1 label objects on the moduli

spaces of Kähler and complex structure deformations, respectively. We shall also use the

capitalised versions of these indices to label projective coordinates on these spaces, that is,

for example A,B, . . . = 0, 1, . . . , h2,1 for the projective complex structure moduli space.

Finally we use capital letters from the middle of the alphabet M,N, . . . for the quan-

tities which transform under 27 of E6.

Where possible we shall use form notation. We use the following conventions:

• We define a p-form as Fp = 1
p!Fm1...mpdxm1 ∧ . . . ∧ dxmp .

• the exterior product of a p- and a q-form is defined as

Fp ∧ Gq = 1
p! q!Fm1...mpGmp+1...mp+q

dxm1 ∧ . . . ∧ dxmp+q which implies the component

relation (Fp ∧ Gq)m1...mp+q
= (p+q)!

p! q! F[m1...mp
Gmp+1...mp+q], where the antisymmetrisa-

tion is always understood to be of unit norm.

• we define the Hogde star ∗ such that Fp ∧ ∗Fp = 1
p!Fm1...mpF

m1...mp .

A.2 Conventions for Calabi-Yau manifolds

We now collect some equations and conventions in relation to Calabi-Yau moduli spaces.

They will be applied identically to the SU(3) structure manifolds in sections 3 and 4, which

are the main subject of this paper.

We denote by J the Kähler form and by Ω the holomorphic (3, 0) form on the

Calabi-Yau manifold X. We choose a basis (ωi) of harmonic (1, 1) forms for the second

cohomology group H1,1(X) and also introduce the dual (2, 2) forms ω̃i. Further, we

require a symplectic basis (αA, βB) of the third cohomology. These forms satisfy the

standard normalisation integrals
∫

ωi ∧ ω̃j = δj
i , (A.1)

∫
αA ∧ βB = δB

A ,

∫
αA ∧ αB =

∫
βA ∧ βB = 0 . (A.2)

The moduli space is parameterized by deformations of the Kähler form J and of the

holomorphic (3, 0) form Ω which we expand as

J = viωi , (A.3)

Ω = ZAαA − GAβA . (A.4)

Here, vi denote the Kähler moduli and ZA are projective coordinates on the complex

structure moduli space. Further, GA denote the first derivatives of the prepotential G. The
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complex structure moduli are given by

za =
Za

Z0
, (A.5)

and, for convenience, we adopt the convention that Z0 = 1.

The metrics on these moduli spaces can be written as

gij =
1

4K

∫
ωi ∧ ∗ωj , (A.6)

gab̄ = − 1∫
Ω ∧ Ω̄

∫
χa ∧ χ̄b̄ , (A.7)

where χa form a basis for the (2, 1) harmonic forms. Their relation to the above symplectic

basis (αA, βB) is encoded in Kodaira’s formula

∂Ω

∂za
= −KaΩ + χa , (A.8)

where, Ka denotes the derivative of the complex structure Kähler potential, is given

in (A.19). The inverse relations are somewhat more complicated to write down. They can

be found in the literature, for example in appendix A of ref. [22] which follows the same

conventions as the present paper. Here we shall only give the formulae for the (1, 2) parts

(β0)1,2 = − 1∫
Ω ∧ Ω̄

Kbg
bāχ̄ā ,

(βa)1,2 = − 1∫
Ω ∧ Ω̄

(
gab̄ + zaKcg

cb̄
)

χ̄b̄ , (A.9)

(αA)1,2 = − 1∫
Ω ∧ Ω̄

gab̄
(
GAa + KaGA

)
χ̄b̄ ,

which are needed for various calculations throughout the paper. As these forms are real,

the (2, 1) parts can be simply obtained by complex conjugation.

Since Ω is a (3, 0) form on a (almost) complex three-dimensional manifold, it should

be proportional to the complex ǫ symbol. We write

Ωαβγ = ||Ω||ǫαβγ , (A.10)

where the norm of Ω is defined as

||Ω||2 =
1

6
ΩαβγΩ̄αβγ =

i

K

∫
Ω ∧ Ω̄ , (A.11)

and K denotes the volume of the Calabi-Yau manifold

K =
1

6

∫
J ∧ J ∧ J . (A.12)

Moreover, we use the conventions for the complex indices that Ω (and thus ǫ) is imaginary

anti-self-dual (IASD)

∗Ω = −iΩ , (A.13)
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while the (2, 1) forms χ are imaginary self-dual (ISD)

∗χ = iχ . (A.14)

We will frequently use the isomorphism between the space H2,1(X) of (2, 1) harmonic forms

and the space H0,1(X,TX) of (0, 1) harmonic forms with values in the holomorphic tangent

bundle whose elements we denote by ηa. Explicitly, this isomorphism can be written as

(ηa)ᾱ
α =

1

2||Ω||2 (χa)βγ
αΩ̄ᾱ

βγ , (A.15)

In terms of the forms η, the metric on the moduli space of complex structure defor-

mations can be expressed as

gab̄ =
1

K

∫
(ηa)

αβ(η̄b̄)αβ . (A.16)

Here, as in the rest of the paper, we have suppressed the measure
√

g in the integral.

The Kähler deformations vi can be viewed as imaginary parts of the complexified fields

ti. Written in terms of these complexified fields, the metric (A.6) is Kähler with associated

Kähler potential

KK(t) = − lnK = −ln

(
1

6
Kijkv

ivjvk

)
= − ln

[
i

48
Kijk(t

i − t̄i)(tj − t̄j)(tk − t̄k)

]
. (A.17)

Here we have used eq. (A.12) for the volume and the expansion (A.3) of J . The triple

intersection numbers Kijk are given by

Kijk =

∫
ωi ∧ ωj ∧ ωk . (A.18)

Similarly, the complex structure moduli space metric (A.7) is also Kähler with associ-

ated Kähler potential

Kcs(z) = − ln i

∫
Ω ∧ Ω̄ . (A.19)

This Kähler potential can be expressed explicitely in terms of the complex structure moduli

and the prepotential G using eq. (A.4). In the large complex structure limit the prepotential

takes the form

G = −1

6

K̃abcZaZbZc

Z0
, (A.20)

with

K̃abc = −i

∫
(ηa)ᾱ

α(ηb)β̄
β(ηc)γ̄

γΩαβγΩᾱβ̄γ̄ . (A.21)

being — up to a constant normalisation — the intersection numbers of the Calabi-Yau

manifold mirror to X. In this case, the complex structure Kähler potential Kcs is of the

same form as the one for the Kähler moduli (A.17), that is,

Kcs(t) = − ln

[
i

48
K̃abc(z

a − z̄a)(zb − z̄b)(zc − z̄c)

]
. (A.22)
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A.3 Commutators and traces

In this subsection we present our conventions for E8 generators with respect to the maximal

subgroup SU(3)×E6. We split the E8 generators into four groups, Sαβ̄, T x, TαP and T̄ᾱP̄ ,

in line with the decomposition

(248) = (8,1)︸ ︷︷ ︸
Sαβ̄

⊕ (1,78)︸ ︷︷ ︸
T x

⊕ (3,27)︸ ︷︷ ︸
TαP

⊕ (3̄,27)︸ ︷︷ ︸
T̄ᾱP̄

. (A.23)

of the adjoint of E8 under SU(3)×E6. Note that the index P is used to label objects which

transform as a 27 under E6 . The matrices Sαβ̄ in the adjoint of SU(3) are subject to the

constraint Sα
α = 0.

With these conventions the E8 commutation relations can be written as

[
TαP , TβR

]
= ǫαβ

γ̄jPR
S̄ T̄γ̄S̄ , (A.24)

[
TαP , T̄β̄R̄

]
= gαβ̄kx

PR̄ + gPR̄Sαβ̄ , (A.25)

[
Sβγ̄ , TαP

]
= −gαγTβP +

1

3
gβγ̄TαP , (A.26)

[
TαP , T x

]
= −kx

P
RTαR . (A.27)

Note that the jPRS is the fully symmetric, cubic invariant of E6. One can easily show that

−kx
P

R are the components of the E6 generators in the 27 representation. The E8 Jacobi

identity implies that

jPR
S̄kx

SS̄ + jRS
S̄kx

P S̄ + jSP
S̄kx

RS̄ = 0 . (A.28)

Finally we use the following normalisation for the (3,27) generators

tr(TαP T̄β̄P̄ ) = gαβ̄gPR̄ . (A.29)

Combining the last equation with eq. (A.24) one finds the useful formula

tr
(
TαP TβRTγS

)
= ǫαβγjPRS . (A.30)

for the cubic E6 invariants jPRS.
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